随着汽车轻量化战略的实施及汽车行业需求的变化,高强度高塑性的先进高强钢被开发及应用。65锰钢板尤其是以中锰钢等钢种为代表的第三代先进高强钢兼顾成本及性能,在低制造成本的前提下,其强塑积能达到30 GPa-%级以上。
在开发中锰钢等第三代先进高强钢的过程中,亚稳奥氏体及其稳定性被认为是影响钢材优异力学性能的关键因素;在应用中锰钢等钢种的过程中,亚稳奥氏体及其稳定性会影响回弹等成形方面的问题,因此需要深入研究。65mn锰冷轧钢板本文以强塑积为30 GPa-%级的高强塑中锰钢为研究对象,分析了组织中亚稳奥氏体在不同应变速率和不同变形方式下的稳定性;并以此为理论依据,探讨了弯曲变形过程亚稳奥氏体发生的相变行为以及亚稳奥氏体对弯曲回弹的影响, 基于奥氏体特征建立了回弹预测模型,实现了中锰钢回弹行为的高精度预测。本文的主要工作和结论如下:利用高速拉伸实验及数字图像关联技术(Digital image correlation,DIC)研究了不同应变速率下亚稳奥氏体的稳定性。
结果表明,在应变速率为10-3s-1至5×101s-1范围内,奥氏体稳定性随着应变速率的增加而增加。通过EBSD和TEM观察发现,不同应变速率下,高强塑中锰钢观组织的演变规律基本保持一致,即奥氏体随着应变量的增加逐渐发生畸变,其内部产生层错,部分奥氏体转变成马氏体;铁素体内部几何必要位错密度随着应变量的增加而显著增加,并形成高密度的小角度晶界;奥氏体晶粒内的层错随着应变速率的增加呈现逐渐稀疏的趋势。结合热动力学计算及观组织分析,65mn锰冷轧钢板在应变速率由10-3 s-1增加至5×101s-1时,奥氏体的层错能由9.8 mJ/m2升高至18.7mJ/m2,层错能的升高抑制了奥氏体的转变,增加了奥氏体稳定性;同时应变速率增加导致发生相变的临界能量升高以及相变驱动力降低,也是奥氏体稳定性上升的原因。通过板材成形实验及DIC技术研究了不同变形方式下亚稳奥氏体的稳定性。
众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司专营: 西藏45号冷轧钢板,规格齐全,品质兼优,价格低廉。欢迎广大客户前来洽谈业务!
目前,随着第三代汽车用现金高强65锰钢板的开发,越来越多的高品质中锰钢出现。中锰钢内有大量亚稳奥氏体组织,在变形过程中伴随着相变的发生,能够提高材料的强度和塑性。但目前科研人员大多聚焦在中锰钢成分及组织调控方面,对于中锰钢实际应用鲜有关注。本文基于原位扫描电镜观察,DIC光学实验观察,XRD检测分析及不同应变量样品的透射电镜观察分析研究了5Mn中锰钢单轴拉伸过程中的变形机理,结合观组织表征、力学性能测试和仿真分析,探索中锰钢成形性能、强韧化机理及实际生产可行性。
5Mn中锰钢强塑积可达到30GPa.%以上,基体为铁素体及奥氏体组织,可能存在冷轧及热处理引入的少量板条马氏体,其中奥氏体分为大晶粒和小晶粒两种类型,大晶粒奥氏体稳定性低于小晶粒奥氏体。单轴拉伸过程中,屈服阶段奥氏体向马氏体转变的转变量较少,因此吕德斯应变仅为1%左右(远低于同类中锰钢),屈服结束后较多大晶粒奥氏体发生相变,20%变形后大量小晶粒奥氏体发生相变。由于奥氏体晶粒较小,因此相变产生的可动位错数量适中,产生连续传播的A型PLC带。部分大晶粒奥氏体在变形过程中出现层错,其相变过程为奥氏体—ε马氏体—α’-马氏体。本文通过埃里克森杯突实验,扩孔实验及成形极限实验研究了5Mn中锰钢的成形性能。65mn锰冷轧钢板钢拥有良好的杯突性能,在光洁区域杯突值可达到12mm以上。实验采用激光切割,线切割及冲孔三种预制孔加工工艺研究制孔工艺对扩孔性能的影响,结果显示线切割制孔样扩孔性能 ,激光切割制孔样扩孔性能为稳定,冲孔样由于冲孔过程中局部材料存在相变及加工硬化,因此扩孔性能
日益增长的节能环保要求正不断推动着汽车轻量化进程,相较镁铝等轻质材料,65锰冷轧钢板汽车用钢面临着全流程绿色生产、高强高塑及优良成形性等多方面的挑战。
以中锰钢和淬火&配分(Q&P)钢为典型代表的第三代先进高强钢(AHSS)在汽车轻量化材料中具有良好的竞争力65锰钢板。本论文主要从第三代AHSS的关键相——亚稳态残留奥氏体的设计出发,结合中锰钢的奥氏体逆转变退火(ART)工艺及Q&P工艺,设计并制备了具有高残留奥氏体含量的超高强含铝中锰钢,系统性探索残留奥氏体含量、形态、尺寸及周围基体相的分布与其相变诱导塑性(TRIP)效应的相互关系,实现低成本、简工序的超高强(抗拉强度>1300MPa,强塑积>35GPa·%)含铝中锰钢的组织调控及强韧化机制研究。低成本无合金元素的“C-Si-Mn-Al”系成分设计及短工序低能耗的制备流程为汽车轻量化提供了优质的选材。
采用0.3C-1.5Si-4Mn,wt.%为基本合金体系,利用梯度铝含量(1\2\4,wt.%)调控中锰系钢的临界区温度及工艺窗口,实现高65mn锰冷轧钢板强度的基体组织设计,即“铁素体+残留奥氏体”的含铝中锰TRIP钢及“铁素体+回火马氏体+残留奥氏体”的含铝中锰淬火及回火配分(IQ-TP)钢。采用扫描电镜SEM、透射电镜TEM、电子背散射衍射EBSD、X射线衍射仪XRD等显组织形貌表征技术及相分析手段,结合原位变形技术系统性分析超高强含铝中锰钢的多元复合组织构成、应变协调性及强韧化机制;同时借助于电子探针EPMA分析宏观元素偏析行为,利用Thermo calc\DICTRA热力学动力学软件及原子探针层析术(APT)等深层次揭示观元素配分规律;合理调控临界区奥氏体化温度、加热速率、65mn锰冷轧钢板压下率等工艺参数,实现残留奥氏体及其他基本相的 化配置,改善或中锰系钢中的屈服平台及PLC塑性失稳现象。