多年来,众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司始终坚持“人无我有,人有我优,人优我精”的经营策略,秉承“以 浙江金华45号冷轧钢板市场为准则,以新创科技为先导”“以德做人、以诚做事”,的经营理念,扎实地走科研与生产 浙江金华45号冷轧钢板相结合的道路。常年来受到了各界的一致好评, 每个员工坚持“质量铸就品牌”的企业宗旨致力于企业核心竞争力,铸造鲜明的企业文化,追求可持续发展打造强势品牌,实现科技富民,产业报国之宏愿。
二维磨损分析指出了 Mn13Cr2和贝-马复相耐磨铸钢的二体摩65锰冷轧钢板擦磨损形式分别主要为黏着磨损和磨料磨损。三维磨损分析阐释了三体冲击磨料磨损中应变疲劳,裂纹,犁沟,嵌入磨粒和挤压堆积是贝-马复相耐磨铸钢的主要磨损机理;嵌入磨粒,犁沟,应变疲劳,切削,挤压堆积和剥落坑是Mn13Cr2的主要磨损机理。四维磨损分析解释了盐雾腐蚀和冲击磨料磨损共同作用下材料的磨损行为,低程度腐蚀试样的磨损机理主要仍表现为犁沟、应变疲劳和嵌入磨粒,试样磨损亚表层变形区较窄。此后随盐雾腐蚀时间的延长,犁沟变得更短而深,磨损失重增大,试样磨损亚表层变形区消失,材料的耐磨性恶化。
65mn锰冷轧钢板建立了理论公式用以估算贝-马复相耐磨铸钢在盐雾腐蚀和冲击磨料磨损协同作用下的磨损失重。试制了一套贝-马复相耐磨铸钢衬板,工业生产的热处理参数制定为910±10℃保温5h,强制风冷,310±10℃回火8h,空冷。试制衬板的组织和性能达到指标要求,衬板整体力学性能与耐磨性均匀,工业应用后寿命超过目前使用的国产衬板平均寿命50%以上。
近年来,随着对汽车产业节能减排及提高性提出越来越高的要求,越来越多的研究者开始研究具有优异综合力学性能的中锰钢,以兼顾汽车轻量化65mn锰冷轧钢板、碰撞性及经济性的要求。基于成分优化及组织调控,中锰钢的力学性能得到较大幅度,但在中锰钢零部件冷加工成型及服役过程中面临的塑性变形和氢脆问题,日益成为其应用和服役的一个制约性因素。对此,本文针对一种新型的高强塑积含Al中锰钢0.25C-8.67Mn-0.54Si-2.69Al(wt%),采用预应变、电化学充氢、氢热分析(TDS)、慢应变速率拉伸(SSRT)、扫描电子显镜(SEM)、电子背散射衍射(EBSD)及透射电子显镜(TEM)等实验方法,较为系统地研究了热轧退火态和冷轧退火态实验钢在不同塑性变形量下的观组织、65锰钢板力学性能变化及氢脆敏感性的变化规律,可以得到以下结论:热轧退火实验钢主要由片层状的退火铁素体+逆转变奥氏体(RA)组成,其中RA含量约为60 vol%,强塑积高达69.1 GPa·%。
3)65锰冷轧钢板o热轧实验钢佳临界退火+淬火和配分(IA&QP)工艺参数为760℃临界区退火30min,180℃等温淬火10s并在350℃等温配分180s。该工艺下热轧实验钢展现出了 力学性能,即抗拉强度1231MPa,伸长率24.8%,强塑积可达30.5GPa·%。IA&QP工艺处理后4Mn-Nb-Mo热轧实验钢的抗拉强度均超过了 1024MPa,但伸长率和RA含量不高。
(4)采用新型循环淬火和奥氏体逆相变(CQ-ART)65锰钢板工艺处理后的4Mn-Nb-Mo冷轧实验钢,晶粒尺寸得到了明显的细化,同时RA含量显著提高。两次循环淬火后的CQ2-ART冷轧试样具有高RA含量(62.0%)、佳晶粒尺寸(0.40μm)以及稳定性;这为RA在变形期间TRIP效应的产生提供了有力的保证。终CQ2-ART试样获得了 综合性能,即抗拉强度为838MPa,伸长率为90.8%,强塑积达到76.1GPa·%。(5)研究4Mn-Nb-Mo和5Mn-Nb-Mo实验钢奥氏体稳定性因素,发现Mn元素的含量是影响其稳定性的主要因素。不同晶粒尺寸和Mn含量的RA具有不同等级的RA稳定性。实验钢RA中存在明显的Mn配分行为,进而导致RA具有不同级别的稳定性,也因此表现出不同的加工硬化行为。本论文设计的4Mn-Nb-Mo和5Mn-Nb-Mo两种低合金实验钢在拥有明显综合性能优势的同时达到了尽量减少总合金元素含量的目的。
(6)65锰钢板三种实验钢S3阶段加工硬化率曲线的大幅度波动归因于不连续TRIP效应。其原因在于RA在拉伸过程中转变为马氏体并且发生了体积膨胀,进而抵消部分应力集中并使应力转移到周围相中而产生协同变形,伴随着应力的松弛和转移;其次,实验钢中的RA需要有不同等级批次的稳定性,当应力值达到或超过该等级批次RA可发生相变的临界值才可产生TRIP效应。(7)Ms点受到RA中化学成分、晶粒尺寸、屈服强度和应力状态等作用影响。可通过将实验钢MSσ温度控制在使用温度以下,以获得更多更稳定的RA,进而产生更为广泛的TRIP效应,终提高实验钢的综合性能。
随着预应变量的增加,退火铁素体中的位错密度明显65锰钢板增加,部分稳定性差的大尺寸RA首先发生相变而使得RA量逐渐降低,稳定性逐渐提高;抗拉强度与屈服强度逐渐提高,而断后伸长率则逐渐降低。热轧退火实验钢具有高的氢脆敏感性,随着预应变量的增大,氢脆敏感性逐渐增大,以相对伸长率损失表征的氢脆敏感性指数由未变形样的75.9%提高到15%预应变样的83.2%。充氢样SSRT宏观断口边部存在脆性平台,其断裂机制主要为准解理断裂,且有较多二次裂纹。
65mn冷轧钢板退火实验钢具有超细晶等轴状的退火铁素体+RA复相组织,在预应变过程中发生了TWIP效应和TRIP效应并出现不稳定的中间相ε-马氏体。与热轧退火实验钢类似,预应变能够显著地改变冷轧退火实验钢的力学性能。冷轧退火中锰钢在拉伸过程中出现吕德斯带以及PLC现象。当预应变量等于吕德斯带对应的应变时,即预应变量约为3%时,可以使吕德斯带消失,但预应变对PLC效应则几乎没有影响。这主要与随着预应变量增加,实验钢中位错密度增加、RA稳定性提高、形变诱导马氏体含量增加及形变孪晶的产生等因素有关。对于冷轧退火中锰钢实验料,随着预应变量的增加,充氢试样中的可扩散氢含量显著增加而氢扩散系数降低。与热轧退火实验钢类似,冷轧退火实验钢同样表现出显著的氢脆敏感性,并且随着预应变量的增加,氢脆敏感性逐渐增大。
65锰钢板不同预应变量未充氢样的SSRT断口呈现典型的韧窝韧性断裂特征,而充氢预应变样断口由近表面的脆性沿晶+准解理的混合断裂向心部的韧窝韧性断裂模式逐渐转变。
将成形实验数据与Keeler公式结合计算得到材料的成形极限图,结果显示Keeler公式计算所得成形极限图与实测值较为接近,可用于5Mn钢的成形极限计算。65锰冷轧钢板此外,为了研究剪切工艺对中锰钢力学性能的影响,本文分别采用0.03t、0.05t、0.067t、0.10t、0.12t(t为板料厚度)五种不同间隙进行冲裁,发现间隙为0.03t时5Mn中锰钢边部形貌 ,毛刺小且边部影响区浅,力学性能也为优异。0.12t间隙样对应毛刺 且边部硬化为严重,因此力学性能差。为进一步探究剪切工艺对5Mn钢力学性能的影响,增加激光及线切割样进行对比。结果显示激光切割同样存在边部硬化情况,但影响区很窄,对力学性能影响极小。
65mn锰冷轧钢板·线切割对材料边部形貌基本无影响,对应了 力学性能。后,为探究5Mn钢的实际应用潜力,进行了汽车零件进气端锥的试制及仿真分析。试制结果显示,5Mn钢可满足零件现有制造工艺要求,9道工序后未出现开裂情况,与现用材料304不锈钢持平。通过Autoform软件进行仿真分析,结合成形极限分布分析,证明中锰钢成形性能优异,总体可满足零件生产要求。
为了减少马氏体中锰钢因韧塑性能不足而产生的开裂和磨损失效,本文利用淬火-配分(Q&P)工艺在马氏体中锰钢基体中引入一定体积分数残余奥氏体,借助OM、SEM观察观组织形貌,采用TEM、EBSD、XRD等技术分析残余奥氏体形貌65锰冷轧钢板、分布与体积分数,使用硬度计、65锰钢板拉伸试验机测试钢的强韧性能,借助磨粒磨损试验机测试钢的抗磨损性能。研究了不同冷却速率对相变行为的影响,淬火-配分(Q&P)工艺对组织演变、强度及磨损性能的影响。