为了让您更地了解我们的六角管质量服务,我们精心制作了产品视频。请花1分钟时间观看,您会发现更多细节和优势。
以下是:六角管质量服务的图文介绍
异型管焊缝气孔的七点措施:焊缝气孔不但影响异型管的焊缝致密性,并且还会成为腐化的诱发点,降低焊缝强度和韧性。焊缝产生气孔的因素,主要包括焊剂中的水分、污物、氧化皮和铁屑,焊接的成份及笼罩厚度,钢板的外貌质量以及钢板边板处置处罚,焊接工艺及异型管成型工艺等。 要异型管焊缝气孔的产生,我们建议采取以下措施:(一)焊剂厚度,焊剂的聚集厚度通常为25-45mm,焊剂颗粒度大、密度小时聚集厚度取大值,反之取小值。大电流、低焊速聚集厚度取大值,反之取小值。另外高温天气或周围湿度大时,使用的焊剂应烘干后再利用;(二)钢板板边处置,钢板板边应设置铁锈和毛刺扫除装置,以避免产生气孔的可能。扫除装置的位置好安置在铣边机和圆盘剪后,装置的布局是一边2个上下位置可调解间隙的自动钢丝轮,上下压紧板边;(三)减小次级磁场,为了避免磁偏吹的影响,应使工件上焊接电缆的毗连位置尽可能远离焊接终端,防止焊接电缆在异型管上发生次级磁场;(四)元素参与,焊接含有适量的CaF2和SiO2时,会反向吸取大量的H2,产生稳固性很高且不溶于液态金属的HF,从而可以防备氢气孔的形成;(五)成型工艺,当低落焊接速率或增大电流,从而使得焊缝熔池金属的结晶速率,以便于气体逸出,同时要是异型管带钢递送位置不稳固,应实时进行调解,杜绝通过微调前桥或后桥维持成型,造成气体逸出困难;(六)钢板外貌处置,为防止开卷矫平脱落的氧化铁皮等杂物进入成型工序,应设置板面排除装置;(七)焊缝形貌,异型管焊缝的成型系数过小,焊缝的形状窄而深,气体和混合物不容易浮出,易形成气孔和夹渣。通常焊缝成型系数控制在1.3-1.5,声测管取大值,薄壁取小值。 影响异型管脱磷的十点因素:脱磷的有利条件是高碱度、氧化性强和流动性良好的炉渣,以及较低的温度。而影响异型管脱磷的因素主要有以下十点:(一)增加炉渣中氧化铁含量,可加速石灰的渣化和改善熔渣的流动性,有利于脱磷反应;(二)当炉渣碱度较高和氧化铁含量较高时,都会使脱磷效果提高,但应指出炉渣碱度过高时,由于炉渣变稠,反而会使脱磷效果降低;(三)当炉渣中氧化铁含量过多时,由于其对炉渣的“稀释”作用,也会使脱磷效果降低;(四)钢液中有较多的磷进入炉渣中,随着炉温升高,磷的分配比降低,即会发生反磷现象;(五)炉温过低,不利于石灰的渣化,并影响熔渣流动性,也阻碍脱磷反应的进行;(六)当控制钢液温度在1550-1580℃,炉渣碱度R=3左右,其流动性良好时,磷的分配比高,脱磷效果显著;(七)若原料中磷含量高,好是采用炉外脱磷处理;也可采用双渣操作,或适当的加大渣量;(八)当前采用溅渣护炉技术,炉渣中MgO含量较高,要注意调整好熔渣流动性,否则对异型管脱磷也有影响;(九)脱磷是钢-渣界面反应,因此具有良好流动性的熔渣,进行充分的熔池搅动,会加速脱磷反应,提高脱磷效率。(十)为了保证异型管钢液的含磷量不超过规格要求,应将氧化期末含磷量作为扒除氧化渣开始还原的条件之一。一般规定,钢液含磷量低一半以上,才可以扒除氧化渣进行还原。 圆变方异型管焊接工艺;控制焊接变形此矩形管由于其外形属于细长杆类,因此焊接变形极难控制。焊接的主要变形有挠曲(正弯)、侧弯、角变形及扭曲变形等。对于此矩形管而言,主要的变形是横向收缩,使矩形断面尺寸受到影响,每边需缩进预留间隙90%左右;焊缝横向收缩后,竖板两端向内弯曲,使构件形成腰鼓状;由于焊缝断面大,输入热量多,必然引起较大的纵向收缩,使构件在长度方向形成挠曲变形;对因不合理焊接造成的扭曲变形,矫正十分困难,有时不得不割开重焊或整件报废。 从焊接变形理论可知,影响焊接变形大小的主要因素是:焊缝尺寸越大,熔敷金属越多,变形越大;焊缝尺寸相等时,焊缝热输入越大,造成的变形也越大;焊接大长焊缝时,分段比直通焊变形要小。 无缝异型管常见缺陷的检测方法:无缝异型管制造过程中偶尔会遇到缺陷问题,如果是在表面,用视觉就能检测到,但是如果问题出在里面又该怎么办呢?常用的检测方法一般来说有磁粉检测或渗透检测两种。磁粉检测或渗透检测可有效的发现异型管表面裂纹、折叠、重皮、发纹、针孔等表面缺陷。对于铁磁性材料、应优先采用磁粉检测法,因其具有较高的检测灵敏度;对于非铁磁性材料,如不锈钢异型管,则采用渗透检测法。当两端预留切除余量较少时,由于检测装置的结构原因,两端头有时得不到有效的检测,而异型管端头是有可能存在裂纹或其他缺陷的部位。如果端头存在有潜在的裂纹倾向,安装时的焊接热影响也有可能使潜在的裂纹扩展。因此,也应注意对焊后异型管一定区域的检测,及时发现钢管端头缺陷的扩展。对在线使用奥氏体异型管,当绝热层损坏或可能有雨水渗进的部位,应注意进行渗透检测,以发现应力腐蚀裂纹或点蚀等缺陷。但磁粉或渗透检测只能对异型管外表面进行检测,对内表面的缺陷则无能为力。对异型管内表面的检测,特别是裂纹类缺陷的检测,必须通过超声波检测来进行。
万盛达钢铁有限公司主营 广东深圳消防镀锌无缝管、镀锌管、镀锌带方管、冷镀锌管厂家。公司经营多年来,“以诚信求生存,以质量谋发展”为宗旨,我公司不断引进高素质人才,打造自己的营销队伍,争取在业内创造丰碑。长期现货供应,厂家直销,工艺精湛,产品质量保障,凭着诚信为本,科学生产,严格管理,完善服务的企业宗旨,依靠的企业员工精心打造国际品牌和产品,我们竭诚与国内外新老客户紧密合作共创企业辉煌的明天。
异型管在我们生活中经常会用到,下面就来为大家介绍下异型钢管的生产制造方法级用途。A生产制造方法:1.一般锅炉管使用温度在430℃以下,国产管主要用10号、20号碳结钢热轧管或冷拔管制造。2.高压锅炉管使用时经常处于高温和高压条件,管子在高温烟气和水蒸气的作用下,会发生氧化和腐蚀。要求钢管具有高的持久强度,高的抗氧化腐蚀性能,并有良好的组织稳定性。 B用途:1.一般异型钢管主要用来制造水冷壁管、沸水管、过热蒸汽管、机车锅炉用的过热蒸汽管,大、小烟管及拱砖管等。2.高压异型钢管主要用来制造高压和超高压锅炉的过热器管、再热器管、导气管、主蒸汽管等。 据统计,2012年全球燃烧化石能源生345亿吨二氧化碳,而其中煤炭燃烧产生的二氧化碳多。廉价的天然气已经减少了美国对煤炭的需求量,但是在其他,需求还在上升。在接下来的20多年时间里,上将有数百万人口 次用上电,按照当前的趋势发展下去,这些电大部分将来源于煤炭。即使取代煤炭的呼声再高,煤炭也不可能被取代,至少不可能被马上取代。 异型管结疤的产生,主要有以下点原因:一、在轧制过程中,由于外界金属物落在轧件表面上,并被带入孔型内,压入轧件表面,在异型管表面形成结疤。这种结疤是不生根的,无规律性;二、轧槽刻痕不良,在轧件表面上形成较高的凸块,再轧时异型管产生周期性的结疤;三、原料表面处理不当,留有尖锐的棱边或深宽比较大的凹坑,经轧制后形成结疤;四、轧制过程中,轧件在成品孔前某一孔型因故损坏或辊环破缺,当轧件通过该孔型后,表面形成凸块,在后面的轧制过程中,凸块被压入基体并随轧件延伸,终在异型管成品表面上,产生周期性的生根结疤;五、轧件在孔型内打滑,使金属堆积于变形区周围的表面上,在轧时造成结疤;六、异型管坯表面有较大的冷溅、翻皮、结疤等缺陷,当用钢锭一火轧成材时,则在成品表面上产生结疤。 钢管缩管机在使用前要明确了解缩管机的原理、注意事项和使用方法,才能更好的使用缩管机,下面我们就一起了解下。1、钢管缩管机原理:通过机械传动,带动钢管旋转,并在钢管的一端用火焰加热,当达到一定温度时,用成型模对加热的钢管头部进行赶制,直至达到所要求的形状为止。2、钢管缩管机构造:用槽钢焊一个地盘,动力端装有电机、减速机、卡头(卡管子用,可用车床卡盘代替)。另一端安装支撑座(可打开的),支撑座上外端固定一个加热环(8-10个喷嘴,用气焊靠抢嘴焊在一个铜管环上)。外边是一个活动的支架,上面安装一个合金模具。3、钢管缩管机使用方法:将管子固定在缩管机上,打开加热器(环)。待温度达到后,推动合金模具,管头形状即达到要求。整个过程约15分钟。 三角管是用钢材做原材料所生产的三角形(三边形钢管)也称异型钢管,其中还有八角管、菱形管、椭圆管,六角管等形状。 三角管是除了圆管以外的其他截面形状的钢管的总称,有焊接异型管和无缝异型管,因为材质的关系,不锈钢异型管一般为304以上材质为多,200、201材质硬度强风,成型难度加大。 三角管广泛用于各种结构件、工具和机械零部件。和圆管相比,不锈钢异型管一般都有较大的惯性矩和截面模数,有较大的抗弯抗扭能力,可以大大减轻结构重量,节约钢材。
圆变方异型管焊接工艺;控制焊接变形此矩形管由于其外形属于细长杆类,因此焊接变形极难控制。焊接的主要变形有挠曲(正弯)、侧弯、角变形及扭曲变形等。对于此矩形管而言,主要的变形是横向收缩,使矩形断面尺寸受到影响,每边需缩进预留间隙90%左右;焊缝横向收缩后,竖板两端向内弯曲,使构件形成腰鼓状;由于焊缝断面大,输入热量多,必然引起较大的纵向收缩,使构件在长度方向形成挠曲变形;对因不合理焊接造成的扭曲变形,矫正十分困难,有时不得不割开重焊或整件报废。 从焊接变形理论可知,影响焊接变形大小的主要因素是:焊缝尺寸越大,熔敷金属越多,变形越大;焊缝尺寸相等时,焊缝热输入越大,造成的变形也越大;焊接大长焊缝时,分段比直通焊变形要小。 # 无缝异型管常见缺陷的检测方法:无缝异型管制造过程中偶尔会遇到缺陷问题,如果是在表面,用视觉就能检测到,但是如果问题出在里面又该怎么办呢?常用的检测方法一般来说有磁粉检测或渗透检测两种。磁粉检测或渗透检测可有效的发现异型管表面裂纹、折叠、重皮、发纹、针孔等表面缺陷。对于铁磁性材料、应优先采用磁粉检测法,因其具有较高的检测灵敏度;对于非铁磁性材料,如不锈钢异型管,则采用渗透检测法。当两端预留切除余量较少时,由于检测装置的结构原因,两端头有时得不到有效的检测,而异型管端头是有可能存在裂纹或其他缺陷的部位。如果端头存在有潜在的裂纹倾向,安装时的焊接热影响也有可能使潜在的裂纹扩展。因此,也应注意对焊后异型管一定区域的检测,及时发现钢管端头缺陷的扩展。对在线使用奥氏体异型管,当绝热层损坏或可能有雨水渗进的部位,应注意进行渗透检测,以发现应力腐蚀裂纹或点蚀等缺陷。但磁粉或渗透检测只能对异型管外表面进行检测,对内表面的缺陷则无能为力。对异型管内表面的检测,特别是裂纹类缺陷的检测,必须通过超声波检测来进行。 # 异型管钢坯加热的三种方式:在异型管生产中,钢坯的加热过程实际上就是热源的传热过程,温度差是传热的基本条件,有温度差才会发生热的传播,根据传热过程中物体温度有无变化,传热可分为稳定态传热和不稳定态传热两种状态。稳定态传热是指在传热过程中,物体各处的温度不随时间变化的传热现象。不稳定态传热是指物体在加热过程中,温度在不断升高,热量不断地由物体表面传向内部,即温度随时间变化的传热现象。 # 异型管钢坯加热,其热源的传播有辐射、传导、对流三种方式:(一)辐射对流与传导两种传热方式必须是物体接触才能传递热能,而辐射则是物体间不必接触就可以将热能由一物体传导到另一物体的传热方式;(二)传导传导传热一般由同一物体的高温部分传至低温部分,也可由高温物体传至与其紧密接触的低温物体。异型管钢坯传导传热具有以下特点:一是传导传热只有粒子的微观热运动,没有宏观的运动或位移。因此传导传热主要发生在金属、耐火材料等固体中。
# 防止异型管转炉喷溅的六个方法:异型管转炉喷溅产生的原因有以下三个:(一)当渣中TFe含量过低,熔渣粘稠,熔池被氧流吹开后熔渣不能及时返回覆盖液面,CO气体的排出带着金属液滴飞出炉口,形成金属喷溅。熔渣返干也会产生金属喷溅。可见,形成金属喷溅的一些原因与发性喷溅正好相反。(二)熔池内碳氧反应不均衡发展,瞬时产生大量的CO气体,这是发生发性喷溅的根本原因。由于操作上的原因,熔池骤然受到冷却,抑制了正在激烈进行的碳氧反应;当熔池温度再度升高到一定程度,碳氧反应重新以更猛烈的速度进行,瞬间排出大量具有巨大能量的CO气体从炉口排出,同时还挟带着一定量的钢水和熔渣,形成了较大的喷溅。(三)除了碳的氧化不均衡外,还有如炉容比、渣量、炉渣泡沫化程度等因素也会引起喷溅。在铁水Si、P含量较高时,渣中SiO2、P2O5含量也高,渣量较大再加上熔渣中TFe含量较高,其表面张力降低,阻碍着CO气体通畅排出,因而渣层膨胀增厚,严重时能够上涨到炉口。此时只要有一个不大的推力,熔渣就会从炉口喷出,熔渣所夹带的金属液也随之而出,形成喷溅。同时泡沫渣对熔池液面覆盖良好,对气体的排出有阻碍作用。严重的泡沫渣可能导致炉口溢渣。 # 要防止异型管转炉喷溅的产生,需要采取以下方法:一、吹炼过程位控制的基本原则是继续化好渣、化透渣、快速脱碳、不喷溅、熔池均匀升温。吹炼中期的特点是强烈脱碳,在这个阶段中,不仅吹入的氧气全部用于碳的氧化,而且渣中的氧化铁也大量被消耗,流动性下降,出现返干现象,影响硫、磷的去除甚至于发生回磷现象,喷溅也严重。为了防止异型管中期炉渣返干,应该适当提。二、保持合理的炉型是在现有技术和设备条件下控制喷溅有效的方法,如应有适当的高度和液面,根据冶炼钢种采取合适的底吹模式,如果发现上涨较高,要及时采取措施进行处理,处理操作应采取勤、轻处理原则。三、做好热平衡,力求做到热量略富裕,这样既能保住终点碳,又不因为热量太富裕冷却料用量大喷溅难控制。还可以采用留渣操作,溅渣护炉时不要把炉渣溅干,在炉内留部分炉渣,剩余的炉渣在下炉吹炼时有利于前期快速成渣,同时减少了冷却剂的加入量和炉渣的泡沫化程度,并将泡沫化高峰前移,从而达到控制异型管转炉喷溅的目的,在炉渣严重泡沫化时,短时间提高位,使氧超过泡沫的熔池面,用氧气射流的冲击破坏泡沫,减少喷溅。四、在某种程度上复吹转炉炼钢的氧操作主要是通过位的变化来调节和控制炉渣中有合适的(FeO)含量,以满足吹炼过程各期的需要。如果(FeO)控制不当,会给吹炼带来困难,因此控制喷溅的关键就是要控制吹炼位。五、正确地控制前期温度,如果前期温度低,炉渣中积累起大量的氧化铁,随后在元素氧化,熔池被加热时,往往突然引起碳的激烈氧化,容易造成发性喷溅。在炉温很高时,可以在提的同时适当加一些石灰,稠化熔渣,有时对抑制喷溅也有些作用,但加入量不宜过多,加入的石灰化完后,如果不继续加人石灰就应当适当降,以免在硅锰氧化结束和熔池温度升高后强烈脱碳时发生严重喷溅。六、后期的任务是进一步调整好炉渣的氧化性和流动性,继续去除硫、磷使熔池异型管钢液成分和温度均匀,稳定火焰,便于准确地控制终点,压速度要缓慢,切忌过快,否则会引起喷溅。冶炼低碳钢,很多采用的是增碳法,所以后期非常注意加强熔池搅拌以加速后期脱碳,均匀熔池的温度和成分。为此在过程化渣不太好,或者中期炉渣返干较严重时,后期应首先适当提化渣。而在接近终点时,再适当降,以加强熔池搅拌,使熔池的温度和成分均匀化,提高金属和合金收得率并减轻对炉衬的侵蚀。 # 浅析固渣护炉的具体操作步骤:传统转炉主要的护炉方法以补炉、喷补及溅渣护炉为主。护炉成本较高,护炉效果不佳,无法确保转炉炉型的稳定运行,且每次补炉需要安排较长时间,影响转炉作业率,增加了生产组织的难度。同时溅渣护炉由于过程控制存在波动及阶段生产节奏紧张造成溅渣时间不足,护炉效果较差。而采取固渣护炉的方法可以节约静态护炉时间,有效保证静态护炉效果。还可以通过稳定转炉入炉条件,提高转炉终点控制及一次拉碳率,巩固过程护炉效果。而且通过确保良好的终渣状态溅渣护炉效果,大幅度降低转炉护炉成本及炉龄,提高转炉作业率。 #