产品细节图
随着汽车轻量化战略的实施及汽车行业需求的变化,高强度高塑性的先进高强钢被开发及应用。65锰钢板尤其是以中锰钢等钢种为代表的第三代先进高强钢兼顾成本及性能,在低制造成本的前提下,其强塑积能达到30 GPa-%级以上。
在开发中锰钢等第三代先进高强钢的过程中,亚稳奥氏体及其稳定性被认为是影响钢材优异力学性能的关键因素;在应用中锰钢等钢种的过程中,亚稳奥氏体及其稳定性会影响回弹等成形方面的问题,因此需要深入研究。65mn锰冷轧钢板本文以强塑积为30 GPa-%级的高强塑中锰钢为研究对象,分析了组织中亚稳奥氏体在不同应变速率和不同变形方式下的稳定性;并以此为理论依据,探讨了弯曲变形过程亚稳奥氏体发生的相变行为以及亚稳奥氏体对弯曲回弹的影响, 基于奥氏体特征建立了回弹预测模型,实现了中锰钢回弹行为的高精度预测。本文的主要工作和结论如下:利用高速拉伸实验及数字图像关联技术(Digital image correlation,DIC)研究了不同应变速率下亚稳奥氏体的稳定性。
结果表明,在应变速率为10-3s-1至5×101s-1范围内,奥氏体稳定性随着应变速率的增加而增加。通过EBSD和TEM观察发现,不同应变速率下,高强塑中锰钢观组织的演变规律基本保持一致,即奥氏体随着应变量的增加逐渐发生畸变,其内部产生层错,部分奥氏体转变成马氏体;铁素体内部几何必要位错密度随着应变量的增加而显著增加,并形成高密度的小角度晶界;奥氏体晶粒内的层错随着应变速率的增加呈现逐渐稀疏的趋势。结合热动力学计算及观组织分析,65mn锰冷轧钢板在应变速率由10-3 s-1增加至5×101s-1时,奥氏体的层错能由9.8 mJ/m2升高至18.7mJ/m2,层错能的升高抑制了奥氏体的转变,增加了奥氏体稳定性;同时应变速率增加导致发生相变的临界能量升高以及相变驱动力降低,也是奥氏体稳定性上升的原因。通过板材成形实验及DIC技术研究了不同变形方式下亚稳奥氏体的稳定性。
二维磨损分析指出了 Mn13Cr2和贝-马复相耐磨铸钢的二体摩65锰冷轧钢板擦磨损形式分别主要为黏着磨损和磨料磨损。三维磨损分析阐释了三体冲击磨料磨损中应变疲劳,裂纹,犁沟,嵌入磨粒和挤压堆积是贝-马复相耐磨铸钢的主要磨损机理;嵌入磨粒,犁沟,应变疲劳,切削,挤压堆积和剥落坑是Mn13Cr2的主要磨损机理。四维磨损分析解释了盐雾腐蚀和冲击磨料磨损共同作用下材料的磨损行为,低程度腐蚀试样的磨损机理主要仍表现为犁沟、应变疲劳和嵌入磨粒,试样磨损亚表层变形区较窄。此后随盐雾腐蚀时间的延长,犁沟变得更短而深,磨损失重增大,试样磨损亚表层变形区消失,材料的耐磨性恶化。
65mn锰冷轧钢板建立了理论公式用以估算贝-马复相耐磨铸钢在盐雾腐蚀和冲击磨料磨损协同作用下的磨损失重。试制了一套贝-马复相耐磨铸钢衬板,工业生产的热处理参数制定为910±10℃保温5h,强制风冷,310±10℃回火8h,空冷。试制衬板的组织和性能达到指标要求,衬板整体力学性能与耐磨性均匀,工业应用后寿命超过目前使用的国产衬板平均寿命50%以上。
近年来,随着对汽车产业节能减排及提高性提出越来越高的要求,越来越多的研究者开始研究具有优异综合力学性能的中锰钢,以兼顾汽车轻量化65mn锰冷轧钢板、碰撞性及经济性的要求。基于成分优化及组织调控,中锰钢的力学性能得到较大幅度,但在中锰钢零部件冷加工成型及服役过程中面临的塑性变形和氢脆问题,日益成为其应用和服役的一个制约性因素。对此,本文针对一种新型的高强塑积含Al中锰钢0.25C-8.67Mn-0.54Si-2.69Al(wt%),采用预应变、电化学充氢、氢热分析(TDS)、慢应变速率拉伸(SSRT)、扫描电子显镜(SEM)、电子背散射衍射(EBSD)及透射电子显镜(TEM)等实验方法,较为系统地研究了热轧退火态和冷轧退火态实验钢在不同塑性变形量下的观组织、65锰钢板力学性能变化及氢脆敏感性的变化规律,可以得到以下结论:热轧退火实验钢主要由片层状的退火铁素体+逆转变奥氏体(RA)组成,其中RA含量约为60 vol%,强塑积高达69.1 GPa·%。
公司实力
众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司成立于2015年是一家专注于 新疆乌鲁木齐45号冷轧钢板等型材的设计生产销售一体的实体厂家。公司通过多年的努力发展现在拥有 新疆乌鲁木齐45号冷轧钢板生产车间5000多平方员工近百人的中型企业,企业年销售额在 新疆乌鲁木齐45号冷轧钢板行业也具备优势位置。公司以人才为本,广纳有贤人士,为每一位员工提供广阔空间。公司从管理上也在不断升级,追求争取在短的时间内发展壮大成为好的企业。